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 A B S T R A C T

The prediction of Sea Level Anomaly (SLA) is crucial for many applications in marine and meteorological 
tasks. Most recently developed SLA prediction methods have been developed mainly on the framework of 
the Recurrent Neural Network (RNN) and its variants. These frameworks suffer from insufficient capability to 
capture spatial information and low computational efficiency. To address these issues, this paper proposes a 
novel method called UNet and Temporal-Spatial Transformer Attention (UNet-TSTA) for accurate and efficient 
SLA prediction. In our model, UNet serves as the backbone structure of the prediction model, enhancing the 
model’s ability to capture features of sea surface eddies at different scales. Meanwhile, the TSTA module 
innovatively constructs multiple spatial–temporal planes through the free combination of temporal and spatial 
dimensions, utilizing the attention mechanism of the Point-by-Point Vision Transformer (P-ViT). The effective 
cooperation of P-ViT and CNN also enhances the training and inference speed of the model. Experimental 
results on real SLA datasets show that our UNet-TSTA method achieves millimeter-level average precision in 
predicting SLA fields for the next seven days. Compared to other advanced algorithms, our method shows 
significant improvements in both computational efficiency and prediction precision.
1. Introduction

Sea Level Anomaly (SLA) refers to the deviation of the ocean surface 
height from a long-term mean value (Bonaduce et al., 2016). The 
research on SLA is of great significance to many forecasting applica-
tions. Predicting SLA enables earlier and more accurate forecasts of El 
Niño and La Niña phenomena (Zhao et al., 2023). Additionally, SLA 
can assist in monitoring and predicting tsunamis and storm surges, 
providing early warning information before natural disasters occur, 
thereby reducing loss of lives and properties (Ningsih et al., 2020).

Traditional methods for predicting SLA primarily rely on physics-
based mathematical models and a series of complex physical equa-
tions (Chen et al., 1998; Gregory and Lowe, 2000; Miles et al., 2014). 
However, physical and dynamic models may lack sufficient flexibility 
to handle complex ocean phenomena. Technically, it usually requires 
consideration of a large number of physical parameters and complex 
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physical processes, resulting in high computational costs, which limits 
their application in large-scale SLA prediction.

Deep learning models can effectively learn features from large 
amounts of data, capture and process complex nonlinear relation-
ships and high-dimensional data, which has important advantages for 
large-scale, high spatiotemporal resolution SLA prediction. When the 
prerequisite of sufficient SLA data is satisfied, data-driven deep learning 
models can automatically learn features and perform analyses from the 
SLA data without the need for manually designing complex physical 
models (Cui et al., 2023).

Currently, most deep learning methods for SLA prediction tasks 
focus on network structures based on Recurrent Neural Network (RNN) 
and its variants (Zhou et al., 2021; Song et al., 2020; Ning et al., 
2021; Wang et al., 2022). RNN can remember previous information 
through their recurrent structure, which helps capture dependencies 
in time series data (Zaremba et al., 2014; Dudukcu et al., 2023).
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Zhou et al. (2021) proposed a Multilayer Fusion Recurrent Neural 
Network (MLFrnn) to achieve accurate prediction of SLA. The RNN 
is employed to capture the dependencies within the SLA time se-
ries. Song et al. (2020) proposed a Merged-Long Short Term Memory 
(Merged LSTM) approach for predicting SLA. This method regards SLA 
prediction as a time series forecasting problem and divides different 
regions of the SLA field into small grids for separate predictions. Zhou 
et al. (2024) developed a Graph-based Memory Recall recurrent neural 
Network (GMR-Net), achieving spatiotemporal prediction of SLA. The 
Memory Storage Recall (MSR) module was utilized to capture the 
medium to long-term temporal dependencies of SLA.

However, RNN and its variants rely on the computation results of 
the previous step to process the current step. This sequential nature 
makes it difficult for RNN and its variants to parallelize the calculation, 
limiting their acceleration on hardware. Besides, RNN is insensitive 
to spatial features, which also poses challenges to the spatiotemporal 
prediction of SLA. Therefore, it is necessary to propose a new efficient 
spatiotemporal network model that can be parallelized for accurate 
long-term prediction of the SLA.

To address the low computational efficiency of RNN, we employ 
the Convolutional Neural Network (CNN) as the fundamental compu-
tational module to accelerate both training and inference speeds. The 
SLA data for a specific latitude-longitude region can be regarded as a 
two-dimensional (2D) time-series image, which is convenient for CNN 
to process. CNN handles image data through convolution operations, 
allowing parallel processing at different positions (Li et al., 2021). 
Convolution operations are very efficient for images or other structured 
data, and can utilize the parallel computation capabilities of GPUs to 
enhance computational efficiency (Liu et al., 2022; Li et al., 2022).

Sea eddies are one of the main factors causing SLA. These eddies 
vary greatly in size and shape (Cui et al., 2022; Jiang et al., 2024). The 
key to SLA prediction lies in the ability to capture the features of these 
eddies in the SLA field (Jiang et al., 2023). However, RNN requires 
flattening the image into a sequence to process 2D data, hindering their 
ability to effectively capture local spatial features within the eddies. 
Due to the fixed receptive field of convolutional kernels, typical CNNs 
also struggle with effective feature extraction when dealing with targets 
of varying scales.

To solve the problem that ordinary CNNs cannot effectively capture 
size-varying sea eddies, we adopt a UNet structure as the backbone of 
the prediction model. UNet employs an encoder–decoder framework. 
The encoder in UNet utilizes pooling operations to obtain feature maps 
at different scales, while the decoder uses upsampling and convolution 
operations to integrate and adjust multi-scale features. This design 
allows UNet to capture local eddy information in the observed SLA 
fields across different scales, thereby improving the reasoning ability of 
future SLA fields. Additionally, the classic encoder–decoder framework 
of the UNet has been demonstrated to possess excellent feature ex-
traction capabilities and stable generalization performance (Ling et al., 
2024; Huo et al., 2024; Liao et al., 2024). Compared to RNNs, the 
parallel computation of convolutional kernels in the UNet enhances 
the model’s computational efficiency. Compared to Multilayer Percep-
trons (MLPs) (Popescu et al., 2009), the weight sharing strategy of 
convolutional kernels in the UNet significantly reduces the number of 
parameters.

However, the use of the CNN-based UNet structure also brings two 
new issues. (1) In the spatial dimension, the local receptive field of 
CNN limits its ability to process global and long-distance information. 
(2) In the temporal dimension, CNN may fail to effectively capture 
time-related dynamic changes in time-series SLA fields.

To address these issues, we specifically design a Temporal-Spatial 
Transformer Attention (TSTA) module that utilizes attention mecha-
nisms to enhance the ability of the backbone structure to capture global 
spatial information and temporal variation information. The TSTA 
module consists of two sub-modules: Spatial Transformer Attention 
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(STA) and Temporal Transformer Attention (TTA). In the spatial dimen-
sion, STA utilizes the 2D attention mechanism of Vision Transformer 
(ViT) (Dosovitskiy et al., 2020) to facilitate global information inter-
action across the entire SLA space, thereby capturing long-distance de-
pendencies more effectively. In the temporal dimension, TTA creatively 
combines the time axis with the spatial axis to form a spatiotemporal 
plane that contains both temporal and partial spatial information. On 
this spatiotemporal plane, we take advantage of the global informa-
tion interaction capability of ViT to learn the spatiotemporal dynamic 
changes of SLA fields. Compared to traditional CNN and RNN, ViT 
achieves position information encoding and feature interaction through 
the self-attention mechanism, thus reducing parameter redundancy and 
computational complexity (Han et al., 2022). Therefore, this treatment 
can help enhance the efficiency of the proposed model.

At the connection between the encoder and the decoder, the feature 
maps contain the richest and most critical spatiotemporal information. 
Based on the TSTA module, a Center TSTA (CTSTA) module is further 
designed to perform finer-grained attention weighting.

Ultimately, each level of the UNet backbone is equipped with a 
lightweight TSTA module, and a separate fine-grained CTSTA module is 
placed at the center position to form the UNet-TSTA model for the SLA 
prediction task. To the best of our knowledge, this is the first attempt 
to use the UNet and ViT method for predicting SLA fields.

Datasets provided by the Copernicus Marine Environment Monitor-
ing Service (CMEMS) are adopted to verify the superior performance 
of our SLA prediction method. These datasets are constructed from 
three representative regions: South China Sea (SCS), Tropical Western 
Pacific (TWP), and Asia Pacific Sea (APS). The model is trained in the 
APS region and independently validated in the SCS, TWP, and APS 
regions. The results indicate that in all regions, our UNet-TSTA model 
can achieve an average prediction error of millimeter (mm) level for 
7-day prediction, outperforming other advanced methods.

In summary, the main contributions of this paper are highlighted as 
follows:

• A UNet-TSTA model is employed to efficiently and accurately 
predict SLA fields for the upcoming days. The multi-level struc-
ture of UNet, taken as the main backbone of the model, aids 
the prediction model in capturing multi-scale sea eddy features. 
The TSTA utilizes Point-by-Point Vision Transformer (P-ViT) to 
enhance UNet’s ability to extract key spatiotemporal features. The 
parallel computing capabilities of CNN and ViT facilitate efficient 
parallel processing on GPUs, thereby improving computational 
efficiency.

• A TSTA module is proposed, including STA and TTA submodules, 
to simultaneously enhance the spatiotemporal modeling ability of 
the prediction model. The STA module utilizes P-ViT to solve the 
problem of insufficient analytical ability of UNet for long-distance 
spatial positional dependencies. The TTA module utilizes the 
freely combined spatiotemporal planes to assist the UNet struc-
ture in effectively capturing time-dependent dynamic changes in 
SLA fields.

• A CTSTA module is proposed to further enhance the spatiotem-
poral attention fitting ability of TSTA. At the connection between 
the encoder and decoder, the spatiotemporal information of the 
feature map is abundant and crucial. The CTSTA module can 
provide a more fine-grained attention mask here, adaptively al-
locating more attention weights to the model, thereby achieving 
flexible attention to different spatiotemporal positions.

• For the task of predicting 7-day SLA fields, the UNet-TSTA model 
achieves an average Root Mean Squared Error (RMSE) of 0.815 
centimeters (cm), 0.714 cm, and 1.140 cm on the SCS, TWP, and 
APS datasets, respectively. Compared with MLFrnn, one of the 
most advanced methods in the SLA field, our model’s RMSE per-
formance can be improved by 17.3%. When compared to main-
stream ConvLSTM methods in recent years, our model exhibits 
smaller prediction errors and improves computational efficiency 
by 6.3 times.
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Fig. 1. The overview of SCS, TWP, and APS locations.

2. Data and study region

2.1. Dataset

The dataset used in our study is sourced from the CMEMS https:
//data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008
047/description. Data from satellite altimeters produced SLA daily 
global grid estimates by Archiving, Validating, and Interpreting Satel-
lite Oceanographic (AVISO) data. The dataset spans from January 1, 
1993, to December 31, 2021, encompassing 10,592 days with daily 
observations. The spatial resolution is 1/4◦ latitude × 1/4◦ longitude. 
We use the SLA fields from January 1, 1993, to December 31, 2015, as 
the training set, and from January 1, 2016, to December 31, 2021, as 
the test set. The training set accounts for 80% and the test set accounts 
for 20% of the dataset. Each independent sample consists of continuous 
𝑇𝑜𝑏𝑠+𝑇𝑝𝑟𝑒𝑑 days of SLA fields, with the first 𝑇𝑜𝑏𝑠 days used as the model 
input and the subsequent 𝑇𝑝𝑟𝑒𝑑 days as the labels. The minimum time 
interval between each independent sample is 3 days. Both 𝑇𝑜𝑏𝑠 and 
𝑇𝑝𝑟𝑒𝑑 are adjustable, and in this study, we set 𝑇𝑜𝑏𝑠 = 28 and 𝑇𝑝𝑟𝑒𝑑 = 7
by default. For the convenience of neural network computation and 
evaluation, the values of land areas in the SLA field will be uniformly 
set to zero.

2.2. Research sea areas

Previous studies often focused on localized coastal areas (Peng and 
Deng, 2020a,b; Peng et al., 2021, 2024); however, our research extends 
into the deeper marine interior, analyzing the dynamic variations in 
SLA on a larger scale. Therefore, three regions in the Pacific Ocean are 
selected to analyze and validate the performance of our SLA prediction 
algorithm, namely SCS, TWP, and APS, as shown in Fig.  1.

The SCS region is a semi-enclosed basin connecting the Pacific 
and Indian Oceans. Due to influences such as monsoons, tides, and 
topography, this area frequently experiences mesoscale eddies and 
storm surges, significantly affecting SLA fields (Metzger and Hurlburt, 
2001; Nan et al., 2011; Zhao et al., 2014; Zheng et al., 2014). Thus, 
the SLA fluctuation characteristics in SCS make the validation of our 
network model more representative. SCS covers the spatial range of 
4.875◦N–19.625◦N, 109.875◦E–119.625◦E.

The TWP is one of the regions with the most complex circulatory 
system globally, significantly impacting the global ocean and climate 
systems (Hu et al., 2021; Whan et al., 2014; Li and Zhou, 2012). Rossby 
waves in this region can significantly influence sea level heights (Mey-
ers, 1979; Chelton et al., 2003; Kessler, 1990), subsequently affecting 
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global climate change and ocean phenomena movements (Carton et al., 
2005; Norris et al., 2013). Therefore, studying SLA fluctuations in 
the TWP region can better validate the robustness of the proposed 
prediction model. TWP covers the spatial range of 0.125◦N–19.875◦N, 
130.125◦E–179.875◦E.

The APS region is one of the main areas where El Niño and La Niña 
phenomena occur, which significantly impact global ocean and climate 
system patterns (Yoshida et al., 2007; You et al., 2021; Gao et al., 
2019). Studying SLA in this region can improve the prediction accuracy 
of extreme natural phenomena, helping to mitigate and respond to 
their potential impacts. We select a subregion covering 19.875◦S to 
44.875◦N and 100.125◦E to 179.875◦E for our study. Researching 
the APS region allows for the full utilization of the extensive spatial 
information of SLA fields beyond the SCS and TWP regions.

Different sea areas have their own respective marine environmental 
characteristics. By independently testing in these different sea areas, the 
adaptability of the model can be evaluated under various complex ma-
rine environments. During the training process, the parameters learning 
of the neural network is conducted only for the relatively large-scale 
APS region. During the testing process, however, evaluations on the 
prediction performance are conducted independently in each of the 
three sea areas. This enables us to avoid the high cost of training three 
different models separately.

3. Methodology

3.1. Network structure

The overall architecture of the UNet-TSTA model is illustrated 
in Fig.  2.  The backbone of the UNet-TSTA model adopts a UNet 
structure. This UNet backbone primarily consists of an encoder, a 
decoder, skip connections, and an output block. Both the encoder and 
decoder incorporate multiple convolutional blocks to construct multi-
scale feature representations. To address the UNet backbone’s insensi-
tivity to spatiotemporal dynamic features, the TSTA module, equipped 
with spatiotemporal attention mechanisms, is embedded within each 
convolutional block. 

The encoder comprises five serially connected convolutional mod-
ules, each followed by a TSTA module. Following each TSTA module, a 
max-pooling operation is performed to compress the spatial dimensions 
of the feature maps. Each convolutional module contains four 2D 
convolutional layers with a kernel size of 3 × 3, and the number of 
convolutional kernels increases with the depth of the network.

The junction between the encoder and the decoder is composed of 
a CTSTA module, which is responsible for applying a more fine-grained 
attention mechanism and weighting to the encoded feature maps.

The decoder includes five convolutional modules and four TSTA 
modules. Each convolutional module also contains four 2D convolu-
tional layers with a kernel size of 3 × 3, and the number of convolu-
tional kernels decreases with the depth of the decoder network. Follow-
ing each convolutional module, an upsampling operation is performed 
to restore the spatial dimensions of the feature maps.

The encoder and the decoder are connected through skip connec-
tions. The feature maps of the encoder and the decoder are aligned in 
size through padding in the spatial dimension, and integrated together 
through concatenation in the channel dimension. During the process 
of gradually restoring the feature maps to the original input size, the 
decoder can dynamically adjust the attention weights based on the 
correlation between features in the encoder and the decoder.

At the end of the decoder, there is a convolutional output block that 
converts the decoded feature maps into predicted SLA fields with a time 
sequence of a fixed length. This output block has a convolutional kernel 
size of 1 × 1, and the number of kernels corresponds to the predicted 
time length.

https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047/description
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Fig. 2. The overview of the UNet-TSTA method. The 𝑇𝑜𝑏𝑠 represents the time length of observed continuous SLA fields. 𝐻 and 𝑊  represent the longitude and latitude ranges of 
the target area, respectively. The 𝑇𝑝𝑟𝑒𝑑 represents the time length of predicted continuous SLA fields. The 𝐶𝑜𝑛𝑣𝑁 represents the convolutional layer with 𝑁 kernels. TSTA and 
CTSTA represent the attention module. The 𝑂𝑢𝑡𝐶𝑜𝑛𝑣 represents the convolutional layer with a kernel size of 1 × 1, which is used to adjust the prediction time length of output 
SLA fields.
3.2. Unet backbone structure

Conventional SLA prediction architectures based on RNN and its 
variants mainly focus on temporal sequence modeling but are weak in 
capturing spatial dependencies. As an alternative the encoder–decoder 
architecture of UNet (Ronneberger et al., 2015) can effectively capture 
hierarchical spatial features from local to global scales. Additionally, 
the architecture of UNet can help enhance the capability of parallel 
computations.

Therefore, in this paper, the UNet architecture is adopted as the 
backbone network. The backbone mainly consists of an encoder, a 
decoder, skip connections, and an output block. The encoder is respon-
sible for spatiotemporal feature extraction and analysis of observed SLA 
fields, while the decoder is tasked with accurately predicting future 
changes. The skip connections help mitigate common issues such as 
gradient vanishing and information loss during feature transmission. 
The output block transforms the feature channels into a sequence of 
SLA fields with a fixed time order.

Since SLA data contains rich temporal sequence information, we 
choose to concatenate SLA of different times along the channel di-
mension, forming a 3D cube with dimensions 𝑇 × 𝐻 × 𝑊 , where 𝑇
represents the temporal dimension, 𝑊  stands for the width dimension, 
and 𝐻 is the height dimension. The UNet backbone network adopts 2D 
convolutions in the 𝐻 × 𝑊  dimension to complete feature extraction 
and reconstruction, while the 𝑇  dimension is treated as the channel 
dimension of the feature map.

3.3. TSTA module

Traditional RNN suffers from the issues of low computational effi-
ciency, gradient vanishing or exploding. In contrast, Transformer uti-
lizes self-attention mechanisms, which are good at capturing long-range 
dependencies, making them more effective for handling long-sequence 
data (Yang et al., 2024). The ViT utilizes the patch partitioning mech-
anism to extend the Transformer’s ability of analyzing long-range de-
pendencies to the 2D image (Khan et al., 2022). Additionally, ViT can 
compute information from different spatial positions in parallel, sig-
nificantly improving efficiency during training and inference stages (Li 
et al., 2023).

Therefore, this paper constructs a TSTA module based on the ViT, 
applying attention weighting to the feature maps extracted by the 
UNet backbone network in both spatial and temporal dimensions. 
The detailed structure of the TSTA module is shown in Fig.  3. The 
TSTA module consists of two parts: STA and TTA, which respectively 
capture the dependencies in the spatial and temporal dimensions of the 
features.
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3.3.1. STA module
As illustrated in Fig.  3(a), the STA employs a P-ViT to capture 

dependencies among different regions in the spatial dimension of the 
input feature map. We segment the input feature map into a series 
of patches and then use a linear layer to convert each patch into a 
feature vector. These vectors are subsequently fed into the Transformer 
Encoder.

The process of dividing the feature map into multiple patches is 
shown in the following equations. 
𝑝ℎ𝑤𝑚,𝑛 = {𝑋(ℎ,𝑤)|ℎ ∈ [𝑚 ⋅ 𝑝ℎ, (𝑚 + 1) ⋅ 𝑝ℎ), 𝑤 ∈ [𝑛 ⋅ 𝑝𝑤, (𝑛 + 1) ⋅ 𝑝𝑤)}, (1)

where 𝑋 is the input feature map, 𝑝ℎ𝑤𝑚,𝑛 stands for the segmented patch 
in spatial dimension, 𝑚 = 1, 2,… ,𝑀 , 𝑛 = 1, 2,… , 𝑁 , 𝑝ℎ𝑤𝑚,𝑛 ∈ R𝑇×𝑝ℎ×𝑝𝑤 , 
𝑋 ∈ R𝑇×𝐻×𝑊 , 𝐻 and 𝑊  represent the height and width of the 𝑋, 
respectively. 𝑝ℎ and 𝑝𝑤 stand for the height and width of a patch, 
respectively. 𝑀 = ⌊𝐻∕𝑝ℎ⌋, 𝑁 = ⌊𝑊 ∕𝑝𝑤⌋, ⌊⋅⌋ represents the floor 
function, and 𝑖, 𝑗, 𝑝ℎ, 𝑝𝑤 ∈ Z.

Subsequently, each patch is embedded into a feature vector through 
the linear layer. 
𝑝𝑤ℎ
𝑚,𝑛 = 𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(𝑝ℎ𝑤𝑚,𝑛), 𝑝

ℎ𝑤
𝑚,𝑛 ∈ R1×𝑇 ⋅𝑝ℎ⋅𝑝𝑤 ,

𝑋ℎ𝑤
𝑚,𝑛 = 𝑝ℎ𝑤𝑚,𝑛𝑊

ℎ𝑤
𝑚,𝑛 + 𝑏ℎ𝑤𝑚,𝑛, 𝑋

ℎ𝑤
𝑚,𝑛 ∈ R1×𝐿𝑡𝑜𝑘𝑒𝑛 ,

(2)

where 𝐹 𝑙𝑎𝑡𝑡𝑒𝑛(⋅) represents the operation of flattening the multidimen-
sional data, 𝑋ℎ𝑤

𝑚,𝑛 is the embedding result, and 𝑊 ℎ𝑤
𝑚,𝑛  and 𝑏ℎ𝑤𝑚,𝑛 stand for 

the updatable weight and bias of the linear layer.
The feature vectors from various patches carry effective information 

of input features at different spatial positions. These feature vectors 
will be input into the Transformer Encoder for global attention feature 
extraction. Fig.  3(c) describes the detailed structure of the Transformer 
Encoder, and the most crucial part is the Multi-Head Attention module.

The Multi-Head Attention module is defined as follows. First, linear 
transformations are applied to generate the Query (Q), Key (K), and 
Value (V) for multiple heads. 
𝑄𝑖 = 𝑋ℎ𝑤𝑊 𝑄𝑖 ,

𝐾 𝑖 = 𝑋ℎ𝑤𝑊 𝐾𝑖 ,

𝑉 𝑖 = 𝑋ℎ𝑤𝑊 𝑉𝑖 ,

(3)

where 𝑋ℎ𝑤 represents the embedding result of patches in spatial dimen-
sion. 𝑊 𝑄𝑖 , 𝑊 𝐾𝑖  and 𝑊 𝑉𝑖  are learnable weight matrices for generating 
𝑄𝑖, 𝐾 𝑖 and 𝑉 𝑖. 𝑖 stands for the 𝑖th head.

Then, the attention feature ℎ𝑒𝑎𝑑𝑖 is calculated by the dot product 
method. The multi-head attention mechanism allows the model to focus 
on input features from multiple different perspectives (heads). 
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾 𝑖, 𝑉 𝑖)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑖(𝐾 𝑖)𝑇
√

)

𝑉 𝑖,
(4)
𝑑𝐾
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Fig. 3. The detailed structure of the TSTA module. The STA module extracts spatial attention features in the spatial dimension, while the TTA module obtains temporal attention 
features in the spatiotemporal dimension. The 𝑁𝑜𝑟𝑚 represents the layer normalization.
where 𝑑𝐾 is the dimension size of 𝐾 𝑖, √𝑑𝐾 is used for numerical scaling 
to avoid gradient vanishing due to excessive inner product values. The 
softmax function is used to standardize scores so that they can be 
represented as probability distributions.

Finally, the outputs of all the heads are concatenated and fused by 
linear operations. 
𝑋𝑀𝐻 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 )

= 𝐶𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂 ,
(5)

where 𝑋𝑀𝐻  is the Multi-Head Attention results, ℎ stands for the 
number of heads, and 𝑊 𝑂 represents a learnable weight matrix that 
performs a linear transformation on the concatenated multi-head atten-
tion output. In our model, ℎ is set to 4. This method allows the model 
to notice sequences of different parts in different headers, enriching its 
feature representation capabilities.

In Fig.  3(a), we employ P-ViT to keep the invariance of data di-
mensions. Unlike the conventional ViT, our P-ViT restores the tokens 
generated by the Transformer Encoder to the same size as the input 
feature map through the linear layer and the reshape operation. This 
measure can establish point-by-point mapping between the output 
features of the Transformer and the original input features, as shown 
in the following equations. 
𝑋𝑡𝑒

𝑚,𝑛 = 𝑋𝑇𝐸
𝑚,𝑛𝑊

𝑇𝐸
𝑚,𝑛 + 𝑏𝑇𝐸𝑚,𝑛 , 𝑋

𝑡𝑒
𝑚,𝑛 ∈ R1×𝑇 ⋅𝑝ℎ⋅𝑝𝑤 ,

𝑋𝑝-𝑣𝑖𝑡
𝑚,𝑛 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑋𝑡𝑒

𝑚,𝑛), 𝑋
𝑝-𝑣𝑖𝑡
𝑚,𝑛 ∈ R𝑇×𝑝ℎ×𝑝𝑤 ,

(6)

𝑋𝑝-𝑣𝑖𝑡
ℎ𝑤 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑝-𝑣𝑖𝑡
11 𝑋𝑝-𝑣𝑖𝑡

12 ... 𝑋𝑝-𝑣𝑖𝑡
1𝑁

𝑋𝑝-𝑣𝑖𝑡
21 ... ... ...
... ... ... ...

𝑋𝑝-𝑣𝑖𝑡
𝑀1 𝑋𝑝-𝑣𝑖𝑡

𝑀2 ... 𝑋𝑝-𝑣𝑖𝑡
𝑀𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

where 𝑋𝑝-𝑣𝑖𝑡
ℎ𝑤  records the result of P-ViT, and 𝑋𝑝-𝑣𝑖𝑡

ℎ𝑤 ∈ R𝑇×𝐻×𝑊 , 𝑋𝑇𝐸
𝑚,𝑛

represents the calculation result of the Transformer Encoder for a patch, 
and 𝑋𝑡𝑒

𝑚,𝑛 stands for the result of the linear layer.
Subsequently, a convolution operation with a single convolution 

kernel is used to compress the temporal dimension of 𝑋𝑝-𝑣𝑖𝑡
ℎ𝑤  to 1, 

followed by a Sigmoid operation to obtain an attention weighted mask 
on the spatial dimension. This attention mask multiplies the original 
input feature map in the spatial dimension to transfer the learned 
spatial dependencies to the UNet backbone.

3.3.2. TTA module
The Spatial Attention Feature obtained by STA is transmitted to 

the TTA module to further capture the temporal dependencies of local 
spatial positions at different time points. As shown in Fig.  3(b), the 
TTA module consists of two network branches: the 𝑃𝐻𝑊  branch and the 
𝑃  branch. Through the unrestricted combinations of the dimensions 
𝑇𝑊
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𝑇 , 𝐻 , and 𝑊 , we obtain three different planes: 𝑃𝐻𝑊 , 𝑃𝑇𝑊 , and 𝑃𝑇𝐻 , 
representing 𝐻×𝑊 , 𝑇 ×𝑊 , and 𝑇 ×𝐻 dimensions, respectively. Among 
them, the 𝑃𝐻𝑊  contains only spatial information, while 𝑃𝑇𝑊  and 𝑃𝑇𝐻
contain rich spatiotemporal information, exhibiting strong correlations 
with temporal changes over time.

It is worth noting that typical ViT operations primarily partition 
patches in the spatial plane (𝑃𝐻𝑊 ) to capture the relationships between 
patches in different spatial positions. However, our TTA method inno-
vatively partitions patches in the 𝑃𝑇𝑊  and 𝑃𝑇𝐻  planes associated with 
time, and acquires a dependency matrix of local spatial and temporal 
relations through P-ViT. Therefore, TTA includes two similar network 
branches that calculate the feature distribution relationships in the 𝑃𝑇𝑊
and 𝑃𝑇𝐻  planes, respectively.

The split patch operation in the 𝑃𝑇𝑊  and 𝑃𝑇𝐻  spatiotemporal planes 
is shown below: 
𝑝𝑡𝑤𝑚,𝑛 = {𝑋(𝑡, 𝑤)|𝑡 ∈ [𝑚 ⋅ 𝑝𝑡, (𝑚 + 1) ⋅ 𝑝𝑡), 𝑤 ∈ [𝑛 ⋅ 𝑝𝑤, (𝑛 + 1) ⋅ 𝑝𝑤)}, (8)

𝑝𝑡ℎ𝑚,𝑛 = {𝑋(𝑡, ℎ)|𝑡 ∈ [𝑚 ⋅ 𝑝𝑡, (𝑚 + 1) ⋅ 𝑝𝑡), ℎ ∈ [𝑛 ⋅ 𝑝ℎ, (𝑛 + 1) ⋅ 𝑝ℎ)}, (9)

where 𝑝𝑡𝑤𝑚,𝑛 and 𝑝𝑡ℎ𝑚,𝑛 represent two patches in the 𝑃𝑇𝑊  and 𝑃𝑇𝐻  spa-
tiotemporal planes, respectively. 𝑝𝑡𝑤𝑚,𝑛 ∈ R𝐻×𝑝𝑡×𝑝𝑤 , and 𝑝𝑡ℎ𝑚,𝑛 ∈ R𝑊 ×𝑝𝑡×𝑝ℎ .

In the original ViT, the width and height of the input image are the 
same, so patches are typically square. However, in the UNet encoder, 
the 𝑇  dimension of the feature map gradually increases while the 𝑊
and 𝐻 dimensions gradually decrease; in the decoder of UNet, the 
opposite is true. Therefore, the length of the 𝑇  dimension often signif-
icantly differs from the lengths of the 𝑊  and 𝐻 dimensions, making 
it unsuitable for square patch partitioning. To address this issue, in 
our P-ViT method, we separately configure the height and width of 
the patches for each layer of the UNet, making them appropriately 
sized rectangles. Table  1 shows the detailed configuration of the patch 
size. When the channel dimension 𝑇  of the feature map increases, the 
slice length 𝑝𝑡 of the patch will increase appropriately, and vice versa. 
The slice length 𝑝𝑡 must be divisible by 𝑇 . The setting rules for other 
dimensions are the same.

In the 𝑃𝑇𝑊  branch of the TTA module, the 𝐻 dimension of the 
output from P-ViT is compressed to 1 through a convolution layer, 
and the 𝑊  dimension is compressed to 1 through a linear layer. 
Then, the weight mask information containing only the 𝑇  dimension 
is obtained through the Sigmoid function. Finally, this weight mask 
information is applied to the input feature map of the TTA module 
through multiplication. The operations in the 𝑃𝑇𝐻  branch are similar. 
The attention information obtained from the 𝑃𝑇𝑊  branch and the 𝑃𝑇𝐻
branch is then integrated into the backbone network’s feature map 
through the Fusion module.
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Fig. 4. The detailed structure of the CTSTA module.
Table 1
Patch size configuration for each layer of the UNet-TSTA. Feature Size = (𝑇 , 𝐻 , 𝑊 ). 
Patch Size = (𝑝𝑡, 𝑝ℎ, 𝑝𝑤), representing the slice length of each patch in the 𝑇 , 𝐻 , and 
𝑊  dimensions, respectively.
 Module Layer Feature size Patch size 
 In 0 (28,320,260) –  
 

Encoder

1 (64,320,260) (4,32,26)  
 2 (128,160,130) (8,8,10)  
 3 (256,80,65) (16,8,5)  
 4 (512,40,32) (32,4,2)  
 5 (1024,20,16) (64,2,2)  
 CTSTA 6 (1024,20,16) (64,2,2)  
 
Decoder

7 (512,20,16) (32,2,2)  
 8 (256,40,32) (16,4,2)  
 9 (128,80,65) (8,8,5)  
 10 (64,160,130) (4,8,10)  
 Out 11 (7,320,260) –  

The definition of the Fusion module is shown in Eq.  (10). 
𝑋𝐹 = 𝐹𝑢𝑠𝑖𝑜𝑛(𝑋𝑇𝑊 , 𝑋𝑇𝐻 , 𝑋𝑆𝐴)

= 𝐶𝑜𝑛𝑣1×1(𝐶𝑎𝑡(𝑋𝑇𝑊 +𝑋𝑇𝐻 , 𝑋𝑆𝐴))

= 𝐶𝑜𝑛𝑣1×1(𝑋𝑐𝑎𝑡),

(10)

where 𝑋𝑇𝑊  and 𝑋𝑇𝐻  stand for the attention feature obtained from 
the 𝑃𝑇𝑊  branch and the 𝑃𝑇𝐻  branch of the TTA module, respectively, 
𝑋𝑆𝐴 is the spatial attention feature, 𝑋𝑇𝑊 , 𝑋𝑇𝐻  and 𝑋𝑆𝐴 ∈ R𝑇×𝐻×𝑊 , 
𝐶𝑎𝑡(⋅) represents the concatenation operation in the channel dimension, 
𝑋𝑐𝑎𝑡 stands for the concatenation result of the 𝐶𝑎𝑡(⋅), 𝑋𝑐𝑎𝑡 ∈ R2𝑇×𝐻×𝑊 , 
𝐶𝑜𝑛𝑣1×1(⋅) is a convolutional layer with a kernel size of 1 × 1, 𝑋𝐹
represents the result of feature fusion, which is the output of TTA 
module, and 𝑋𝐹 ∈ R𝑇×𝐻×𝑊 .

3.4. CTSTA module

The junction of the UNet encoder and the decoder is the central 
module of the entire SLA prediction model. Here, the spatial informa-
tion of the input feature maps is compressed to the minimum, while 
the temporal dimension is expanded to its maximum. Consequently, 
these feature maps contain refined spatial information and abundant 
temporal sequence variation information. Applying a more fine-grained 
attention mechanism weighting to these feature maps can significantly 
enhance SLA prediction accuracy.

The CTSTA module is proposed based on TSTA to perform a more 
fine-grained attention mechanism weighting on the feature maps at the 
central part of the UNet backbone network. The detailed structure of 
the CTSTA module is illustrated in Fig.  4. The CTSTA module consists 
387 
of two parts: Center STA (CSTA) and the Center TTA (CTTA), which 
respectively capture the spatial and temporal dependencies of the input 
features. However, in the CSTA module, the number of convolution 
kernels that generate the spatial mask is adjusted to equal the number 
of 𝑇  dimensions. That is, the spatial mask of CSTA has a dimension 
of 𝑇 × 𝑊 × 𝐻 , instead of 1 × 𝑊 × 𝐻 in STA. Compared to the STA 
module, the weight distribution in the spatial mask here can more 
finely map to each data point of the input features, enabling more 
accurate localization and identification of key structures in the feature 
maps. Similarly, in the CTTA module, the linear layers used to compress 
the 𝑊  or 𝐻 dimensions are removed. As a result, the temporal mask 
of CTTA is more fine-grained, having a dimension of 𝐻 × 𝑇 × 𝑊  or 
𝑊 × 𝑇 ×𝐻 , instead of 1 × 𝑇 × 1 in TTA.

Since the CTSTA module requires a higher data density for the 
attention mask compared to TSTA, the length of the hidden token 
vectors in the transformer encoder should be appropriately increased 
to accommodate more complex and flexible weight variations. In this 
paper, the token vector length (𝐿𝑡𝑜𝑘𝑒𝑛) of CTSTA is set to 768, while 
that of TSTA is set to 128. Due to the substantial number of parameters 
in the CTSTA module, we utilize a single CTSTA module only in the 
central area of the UNet backbone structure to enhance the prediction 
precision. In contrast, in the UNet encoder and decoder, the TSTA 
modules with fewer parameters are employed to dynamically adjust the 
focused features through a layer-by-layer attention mechanism.

3.5. Loss function and evaluation indicators

The Mean Squared Error (MSE) is a convex function, which makes 
it easier to find the global optimum during the optimization process, 
avoiding local optima. Therefore, we choose MSE as the loss function 
for model training, as shown in Eq.  (11). 

𝑙𝑜𝑠𝑠𝑚𝑠𝑒 =
1
𝑛

𝑛
∑

𝑖=1
‖𝑦𝑖 − 𝑦̂𝑖‖

2
2, (11)

where 𝑦𝑖 represents the predicted result of the model for the 𝑖th sample, 
𝑦𝑖 stands for the true value of the 𝑖th sample, ‖ ⋅‖2 represents 𝐿2 norm, 
𝑛 is the number of samples, and 𝑙𝑜𝑠𝑠𝑚𝑠𝑒 represents the MSE loss value.

The Adaptive Moment Estimation (Adam) optimizer dynamically 
adjusts the learning rate based on the estimates of the first and second 
moments of the parameters’ gradients, allowing different parameters 
to have different learning rates, which helps to accelerate the learning 
process and improve the model’s convergence speed. Thus, we adopt 
the Adam optimizer to update the model parameters.

Additionally, we use other commonly employed evaluation metrics 
in SLA prediction, RMSE and Mean Absolute Error (MAE), to assess the 
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Table 2
Comparison results with other advanced prediction methods in SCS area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 FCN (Long et al., 2015)

MAE (cm)

2.023 2.029 2.062 2.128 2.212 2.318 2.435 2.172  
 Motion RNN (Wu et al., 2021) 0.828 1.062 1.317 1.580 1.844 2.101 2.349 1.583  
 ConvLSTM (Su et al., 2020) 0.178 0.322 0.496 0.702 0.932 1.177 1.429 0.748  
 MLFrnn (Zhou et al., 2021) 0.236 0.374 0.533 0.713 0.909 1.114 1.325 0.743  
 SmaAtUNet (Trebing et al., 2021) 0.255 0.337 0.476 0.650 0.841 1.042 1.242 0.692  
 Ours 0.194 0.294 0.427 0.582 0.752 0.933 1.120 0.614  
 FCN (Long et al., 2015)

RMSE (cm)

2.745 2.759 2.795 2.870 2.969 3.101 3.251 2.927  
 Motion RNN (Wu et al., 2021) 1.326 1.576 1.864 2.181 2.509 2.837 3.158 2.207  
 Merged LSTM (Song et al., 2020) 0.280 0.590 0.880 1.200 1.600 – – –  
 ConvLSTM (Su et al., 2020) 0.238 0.425 0.654 0.927 1.232 1.558 1.893 0.990  
 MLFrnn (Zhou et al., 2021) 0.324 0.506 0.714 0.946 1.200 1.466 1.739 0.985  
 SmaAtUNet (Trebing et al., 2021) 0.339 0.447 0.630 0.861 1.114 1.378 1.644 0.916  
 Ours 0.259 0.390 0.565 0.770 0.997 1.238 1.487 0.815  
model’s predictive performance, as shown in Eqs. (12) and (13). 

𝑅𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
‖𝑦𝑖 − 𝑦̂𝑖‖2, (12)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
‖𝑦𝑖 − 𝑦̂𝑖‖1, (13)

where 𝑦𝑖 represents the 𝑖th true value, 𝑦̂𝑖 stands for the 𝑖th predicted 
value, ‖ ⋅ ‖1 denotes 𝐿1 norm, and 𝑛 represents the number of samples.

4. Experimental results

In this section, we conduct detailed comparative experiments to 
verify the superiority of our proposed method. For the convenience of 
readers, the data unit in this paper is set to cm by default.

4.1. Comparative experiments with other advanced methods

To validate the superiority of the proposed UNet-TSTA method, 
we conduct comparative experiments with other advanced prediction 
methods, including Merged LSTM (Song et al., 2020), MLFrnn (Zhou 
et al., 2021), ConvLSTM (Su et al., 2020), SmaAtUNet (Trebing et al., 
2021), Motion RNN (Wu et al., 2021), and FCN (Long et al., 2015). 
The prediction duration for models is set to 7 days. The longer time 
comparison results can refer to Fig.  9 and Section 4.5. The experimental 
results for MLFrnn and Merged LSTM methods in the SCS region are 
obtained directly from the original papers (Zhou et al., 2021; Song 
et al., 2020), as their data sources and the cropped area are the same 
as ours. For the lack of publicly available source code, the results of 
the other two areas (TWP and APS) are absent for these two methods. 
The original paper of the Merged LSTM method only conducted SLA 
prediction for the next 5 days, coinciding with the results presented in 
Table  2.

Tables  2–4 present a comparison of different prediction models. 
Our UNet-TSTA model achieves the lowest RMSE and MAE across 
three distinct sea areas. Among the compared models, the average 
prediction errors of the ConvLSTM, the MLFrnn, and the SmaAtUNet 
are all within the mm range. Compared to one of the state-of-the-art 
methods, MLFrnn, which is specifically designed for the SLA prediction 
task, our model shows a 17.3% improvement in prediction performance 
on average. The SmaAtUNet method employs a model architecture 
similar to our UNet-TSTA approach, utilizing a combination of UNet 
and an Attention module. Therefore, its prediction performance is 
the closest to ours. This similarity suggests that the integration of 
attention mechanisms within a UNet framework can lead to notable 
improvements in prediction precision for SLA tasks.

We attempt to employ the Fully Convolutional Network (FCN) 
approach (Long et al., 2015) for the SLA prediction task. However, 
the FCN exhibits significant prediction errors. Compared to the UNet 
structure, FCN lacks the skip connection architecture. The downsam-
pling and upsampling operations in the encoder and the decoder may 
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result in the loss of critical spatial information, leading to less refined 
prediction outcomes. The absence of skip connections prevents effective 
compensation for these spatial information losses. Furthermore, the 
lack of skip connections prevents the effective integration of lower-
level and higher-level features. Additionally, FCN lacks transformer 
attention mechanisms, resulting in its inability to effectively capture 
dynamically spatiotemporal information. Therefore, relying solely on 
CNN structures proves insufficient for accurately predicting the SLA 
field.

The Motion RNN (Wu et al., 2021) method is originally designed 
to predict spatiotemporal variations in visual videos by simultaneously 
capturing transient changes and motion trends. The reliance on RNN-
based frameworks inherently limits their ability to effectively extract 
local spatial features, which are crucial in tasks like SLA prediction. 
Furthermore, the method’s design for natural image sequences might 
not seamlessly transfer to SLA field prediction, where the dynamics 
and characteristics of the data differ significantly. Thus, despite its 
capabilities in capturing transient changes and motion trends in natural 
visual videos, the Motion RNN method may not be optimally suited for 
the specific demands of SLA prediction tasks.

The Merged LSTM (Song et al., 2020) method employs a three-
layer LSTM approach to accomplish the SLA prediction task. This 
method treats SLA prediction as a time-series forecasting problem and 
divides the SLA field into several small subgrids for independent pre-
diction. This grid division approach fragments the originally complete 
2D spatial information, making it difficult for the network model to 
capture the global dependencies between subgrids. LSTM is primarily 
designed for handling time-series data, and when applied to the SLA 
field processing, it struggles to effectively capture and retain the spatial 
features of SLA fields.

The ConvLSTM (Su et al., 2020) integrates the strengths of both 
CNN and LSTM, effectively capturing spatial and temporal features 
when processing spatiotemporal data. Consequently, its predictive per-
formance surpasses that of both FCN and RNN methods. The ConvLSTM 
adopts a recurrent prediction strategy, predicting the SLA field for only 
1 day at a time and using the predicted result as input to sequentially 
predict the following days. When predicting the first day, ConvLSTM 
focuses on the current time step and does not consider next multi-step 
prediction issues, which leads to slightly better short-term prediction 
results compared to our UNet-TSTA method. However, as the number of 
prediction days increases, the errors are gradually accumulated, leading 
to a significant decline in the next days’ performance. This is due to the 
fact that the trend of SLA changes is difficult to manifest in the short 
term, and ConvLSTM tends to generate results similar to the last day 
in the input at each step, which impacts the overall accuracy of the 
prediction. 

In contrast, our proposed method uses a one-step prediction strategy 
for the next 7 days, avoiding the error propagation issues that may arise 
in step-by-step predictions. At the same time, the UNet-TSTA introduces 
a spatiotemporal attention mechanism based on P-ViT, allowing the 
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Table 3
Comparison results with other advanced prediction methods in TWP area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 FCN

MAE (cm)

1.443 1.452 1.502 1.585 1.684 1.785 1.891 1.620  
 Motion RNN 0.512 0.766 1.028 1.287 1.536 1.771 1.991 1.270  
 ConvLSTM 0.152 0.291 0.460 0.653 0.860 1.071 1.279 0.681  
 SmaAtUNet 0.223 0.293 0.428 0.590 0.756 0.924 1.092 0.615  
 Ours 0.161 0.252 0.376 0.519 0.673 0.831 0.988 0.543  
 FCN

RMSE (cm)

2.107 2.116 2.157 2.232 2.326 2.439 2.561 2.277  
 Motion RNN 0.696 1.017 1.357 1.696 2.024 2.335 2.626 1.679  
 ConvLSTM 0.201 0.382 0.605 0.861 1.134 1.410 1.680 0.896  
 SmaAtUNet 0.287 0.380 0.561 0.777 0.998 1.220 1.441 0.809  
 Ours 0.210 0.330 0.493 0.683 0.887 1.095 1.302 0.714  
Table 4
Comparison results with other advanced prediction methods in APS area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 FCN

MAE (cm)

2.396 2.396 2.448 2.528 2.621 2.720 2.820 2.561  
 Motion RNN 1.049 1.317 1.590 1.863 2.127 2.377 2.614 1.848  
 ConvLSTM 0.182 0.346 0.545 0.772 1.014 1.261 1.504 0.803  
 SmaAtUNet 0.299 0.381 0.549 0.728 0.916 1.126 1.310 0.758  
 Ours 0.202 0.311 0.460 0.631 0.812 0.994 1.175 0.655  
 FCN

RMSE (cm)

4.117 4.128 4.173 4.255 4.353 4.475 4.605 4.301  
 Motion RNN 1.899 2.244 2.616 3.007 3.394 3.767 4.121 3.007  
 ConvLSTM 0.336 0.626 0.944 1.321 1.720 2.116 2.495 1.373  
 SmaAtUNet 0.496 0.645 0.931 1.257 1.583 1.901 2.209 1.289  
 Ours 0.338 0.531 0.803 1.113 1.431 1.738 2.031 1.140  
model to better capture long-range temporal dependencies and cross-
space correlations inherent in the SLA field. This enables more accurate 
judgments of SLA changes over multiple future time steps. Experimental 
results show that as the prediction days progress, the prediction perfor-
mance of UNet-TSTA surpasses ConvLSTM as early as the second day 
and demonstrates a significant advantage in predictions for 2-7th days. 
Additionally, Table  9 demonstrates the computational efficiency and 
parameter advantages of our UNet-TSTA method, further highlighting 
its superior performance compared to ConvLSTM.

The MLFrnn (Zhou et al., 2021) designs a multi-layer fusion cell to 
simultaneously extract and integrate spatiotemporal features based on 
RNN and convolutions. However, the inherent problem of RNN in ef-
fectively utilizing local or global image features remains unresolved. In 
contrast, our TSTA module utilizes the multi-head attention mechanism 
of P-ViT and the freely combinable spatiotemporal planes, capturing 
complex long-range spatiotemporal dependencies. Moreover, P-ViT’s 
Transformer-based modular design allows for flexible adjustment of 
model size, number of layers, and attention heads, offering greater 
flexibility.

The SmaAtUNet (Trebing et al., 2021) adopts a structure combining 
UNet and CBAM to perform spatiotemporal prediction. The CBAM (Woo 
et al., 2018) module utilizes both spatial and temporal attention mech-
anisms, which is similar to our TSTA module. The results show that 
both the SmaAtUNet method and the UNet-TSTA method perform well 
in prediction tasks. This indicates that attention mechanisms in both 
time and space are well-suited to solving SLA prediction problems. 
However, CBAM’s spatial and channel attention features are obtained 
through convolutional and linear layers, whereas our TSTA module 
acquires attention features via a sophisticated spatiotemporal P-ViT 
mechanism. The capability of ViT in global feature integration often 
surpasses that of conventional convolutional or linear layers. On the 
other hand, SmaAtUNet uses a depthwise separable convolution-based 
UNet as its backbone. While this reduces the number of parameters 
and computational load, it can also lead to insufficient expressive 
capability. Therefore, the prediction results obtained by the UNet-TSTA 
method are more accurate.

The comparison between the predicted SLA field and the actual SLA 
field can provide a tangible measure of prediction quality in Figs.  5, 6, 
and 7. These figures respectively display the predicted SLA fields by the 
UNet-TSTA model for the SCS, TWP, and APS sea areas. The similarity 
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between the real SLA field and the predicted SLA field is relatively high. 
This proves that our UNet-TSTA model has successfully captured the 
dynamic change trends of the SLA field to a certain extent.

In Fig.  5-(c), in the southeast corner of the SCS area, there is a land 
area. In the coastal regions close to the land, the prediction errors are 
significantly higher than those in the central regions of the SCS. This is 
largely due to the reason that, when ocean currents encounter land, 
they undergo changes such as bifurcation and convergence, forming 
complex circulation patterns. Additionally, due to the blocking and 
constraints of the land topography, tidal waves experience reflection, 
refraction, and interference during their propagation. The superposition 
of tidal waves and circulation patterns from different directions makes 
the variation patterns of the SLA field in the nearshore areas difficult 
to predict accurately.

Additionally, from the comparison between Figs.  5-(c) and 6-(c), it 
is clear that the prediction errors in the SCS are significantly higher 
than those in the TWP. The results in Tables  2 and 3 also show 
the same trend. Under the same condition of using our UNet-TSTA 
model, the average MAE in SCS area is 13.07% higher than that in 
the TWP area. This is because the SCS sea area has a complex seabed 
topography, including basins, trenches, ridges, and continental shelves. 
In contrast, the topography of the TWP region is relatively more open 
and gentle, and the movement patterns of the ocean currents are 
easier to grasp. The numerous islands around the SCS can block and 
diffract ocean currents and waves, altering the local oceanic dynamic 
environment. However, some areas of the TWP have fewer islands, and 
the oceanic dynamic environment is relatively simpler. Therefore, the 
SLA prediction errors are relatively lower in the TWP region.

4.2. Ablation study

To demonstrate the performance improvement brought by the dif-
ferent modules for the SLA prediction task, we conduct specialized ab-
lation experiments. Tables  5–7 present the experiment results. ‘‘UNet’’ 
represents the common UNet structure without any auxiliary attention 
modules. ‘‘UNet + TSTA’’ means that for each convolutional module in 
the UNet structure, a TSTA module is used to assist the UNet backbone 
structure in feature extraction and prediction of SLA fields. Addition-
ally, we add a CTSTA module at the connection position between the 



Q. Wang et al. ISPRS Journal of Photogrammetry and Remote Sensing 229 (2025) 382–395 
Fig. 5. The prediction results of the UNet-TSTA model for future 7-day SLA fields in SCS area. (a) the predicted SLA field. (b) the real SLA field. (c) the absolute error between 
the predicted and real SLA field.
Fig. 6. The prediction results of the UNet-TSTA model for future 7-day SLA fields in TWP area. (a) the predicted SLA field. (b) the real SLA field. (c) the absolute error between 
the predicted and real SLA field.
Table 5
The TSTA module ablation experiment results in SCS area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 UNet

MAE (cm)
0.259 0.351 0.483 0.640 0.814 0.999 1.192 0.676  

 UNet+TSTA 0.202 0.299 0.429 0.584 0.757 0.943 1.136 0.621  
 UNet+TSTA+CTSTA 0.194 0.294 0.427 0.582 0.752 0.933 1.120 0.614  
 UNet

RMSE (cm)
0.376 0.480 0.643 0.844 1.072 1.315 1.569 0.899  

 UNet+TSTA 0.269 0.396 0.569 0.774 1.004 1.250 1.504 0.823  
 UNet+TSTA+CTSTA 0.259 0.390 0.565 0.770 0.997 1.238 1.487 0.815  
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Fig. 7. The prediction results of the UNet-TSTA model for future 7-day SLA fields in APS area. (a) the predicted SLA field. (b) the real SLA field. (c) the absolute error between 
the predicted and real SLA field.
Table 6
The TSTA module ablation experiment results in TWP area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 UNet

MAE (cm)
0.179 0.276 0.413 0.564 0.725 0.884 1.045 0.583  

 UNet+TSTA 0.167 0.256 0.381 0.528 0.685 0.846 1.004 0.552  
 UNet+TSTA+CTSTA 0.161 0.252 0.376 0.519 0.673 0.831 0.988 0.543  
 UNet

RMSE (cm)
0.235 0.360 0.540 0.741 0.953 1.163 1.375 0.766  

 UNet+TSTA 0.217 0.334 0.500 0.693 0.901 1.112 1.320 0.725  
 UNet+TSTA+CTSTA 0.210 0.330 0.493 0.683 0.887 1.095 1.302 0.714  
Table 7
The TSTA module ablation experiment results in APS area.
 Prediction (day) 1st 2nd 3rd 4th 5th 6th 7th Average 
 UNet

MAE (cm)
0.277 0.374 0.522 0.690 0.871 1.051 1.232 0.717  

 UNet+TSTA 0.211 0.317 0.466 0.639 0.822 1.008 1.190 0.665  
 UNet+TSTA+CTSTA 0.202 0.311 0.460 0.631 0.812 0.994 1.175 0.655  
 UNet

RMSE (cm)
0.471 0.616 0.861 1.152 1.455 1.750 2.037 1.192  

 UNet+TSTA 0.349 0.540 0.813 1.124 1.444 1.754 2.049 1.153  
 UNet+TSTA+CTSTA 0.338 0.531 0.803 1.113 1.431 1.738 2.031 1.140  
encoder and the decoder to form the final ‘‘UNet + TSTA + CTSTA’’ 
structure.
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The experimental results in Tables  5–7 demonstrate that the use of 
the TSTA module improves the model’s average prediction performance 
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Fig. 8. Experimental results of predicting time length. (a), (b) and (c) represent the experimental results of RMSE in SCS, TWP, and APS areas, respectively.
in the SCS, TWP, and APS sea areas by 8.45%, 5.35%, and 3.38%, 
respectively. This confirms that the dual attention mechanism in both 
temporal and spatial dimensions enhances the UNet backbone’s ability 
to analyze and predict SLA fields. Furthermore, after adding the CTSTA 
module to the prediction model, the average prediction performance 
improved by 9.34%, 6.79%, and 4.51% in the SCS, TWP, and APS sea 
areas, respectively, compared to the initial UNet backbone structure. 
This indicates that incorporating a finer-grained spatiotemporal atten-
tion mechanism at the connection position between the encoder and 
the decoder helps enhance the model’s ability to capture and predict 
the spatiotemporal dynamic changes of the entire SLA fields.

The UNet backbone achieves a 7-day average MAE of less than 1 cm, 
demonstrating that embedding the temporal dimension into the feature 
channel dimension of the 2D UNet is highly effective for multi-step 
prediction of SLA fields. Due to the already low error of the UNet 
backbone, the reduction magnitude in MAE and RMSE after introducing 
TSTA modules may appear modest. However, compared to the baseline 
UNet, the UNet-TSTA model achieves MAE reduction ratios of 9.17%, 
6.86%, and 8.67% in the SCS, TWP, and APS regions, respectively. 
These results indicate that the incorporation of spatiotemporal atten-
tion mechanisms leads to a significant improvement. Furthermore, as 
the prediction time extends, the advantage of the UNet-TSTA model 
will become increasingly evident due to cumulative error effects. The 
spatiotemporal attention mechanism in the TSTA module effectively 
extends the model’s valid forecasting period, which is particularly 
valuable for long-term ocean system analysis. 

4.3. Performance over longer predicting time ranges

To explore the predictive performance limits of the UNet-TSTA 
model, we attempt to predict SLA fields over longer time ranges. We 
adjust the number of convolution kernels in the output layer of the 
UNet-TSTA model to control the length of the prediction time (𝑇𝑝𝑟𝑒𝑑). 
To control the variables of the comparison experiment, the length of 
time for input SLA fields is uniformly set to 28 days, while the output 
lengths of time are set to 7, 14, 21, 28, and 35 days, respectively.

Fig.  8 shows the experimental results for the three different regions. 
By observing the RMSE curves for different prediction days, we find 
that the fewer the days predicted at a time, the smaller the prediction 
error of the model. As the number of prediction days increased, the 
model’s forecasting ability for the initial days gradually deteriorated. 
This is because when computing the MSE loss, the errors of SLA fields 
at closer time steps contribute smaller values compared to those farther 
away. Therefore, errors in SLA fields at distant time steps have a greater 
impact on the overall MSE loss. To minimize the average MSE loss 
across all time steps, the optimizer tends to adjust gradients towards 
directions that reduce the loss at those farther time steps. This may 
also lead to the optimizer overlooking variations in the loss at closer 
time steps.
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4.4. Performance over different observation time ranges

In this experiment, we investigate the effect of the observation 
period length 𝑇𝑜𝑏𝑠 on the predictive performance. We only vary the 
input parameter 𝑇𝑜𝑏𝑠 without altering the model’s prediction parameter 
𝑇𝑝𝑟𝑒𝑑 . Table  8 shows the prediction performance of the model with 
different observation periods.

When the number of observation days is too small, the model 
cannot capture the complete variation process of the SLA field from 
the input data, resulting in poor performance. Conversely, when the 
number of observation days is too large, the input information becomes 
redundant, making it difficult for the model to identify key variation 
intervals within the excessively long time series. From Table  8, we 
can observe that the prediction model’s RMSE and MAE tend to be 
lower when the observation period is over 28 days. And this consistent 
outcome is observed across the three different experimental sea areas. 
Therefore, we select an optimal observation period of 28 days, which 
yields the best experimental results, as the appropriate input duration 
for the model.

The length of input time (𝑇𝑜𝑏𝑠) for the proposed UNet-TSTA model is 
determined by the number of input channels in the first convolutional 
layer. Therefore, the input time window of the model can be flexibly 
adjusted according to specific application scenarios. In practical appli-
cations where SLA data are at risk of high-frequency missing values 
– such as satellite observation interruptions or transmission failures 
– a model with a 7-day input window is more likely to meet data 
completeness requirements. On the other hand, if the historical SLA 
data is relatively complete, employing a model with a 28-day input 
window can offer more reliable predictive accuracy.

4.5. Further comparison experiments with other advanced methods over 
long prediction time ranges

To validate the superior performance of our UNet-TSTA method 
in long-term SLA prediction, we conduct an experiment to assess its 
extreme performance in predicting longer durations compared to other 
advanced prediction methods. Based on the experimental results in Fig. 
8, it is evident that predicting long-term SLA fields in a single output 
adversely affects early-stage performance of the predictions. Therefore, 
we use the 7-day prediction model and attempt to use the predicted 
SLA fields together with the observed SLA fields as input to predict 14 
more days, taking a rolling strategy to obtain a prediction result of up 
to 21 days.

Fig.  9 illustrates how the prediction performance of different models 
varies with increasing prediction days, which is consistent with the 
experimental results of Tables  2–4 when only predicting 7 days. The 
RMSE performance curve of our UNet-TSTA method consistently re-
mains below that of other methods, indicating its ability to maintain 
effective predictions over longer durations. The RMSE performance 
curves of MLFrnn, ConvLSTM, and SmaAtUNet methods demonstrate 
good and stable performance. Compared to the state-of-the-art MLFrnn 
method, the performance advantage of our UNet-TSTA model increases 
with the number of prediction days.
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Fig. 9. Comparison results with other advanced methods in different sea areas.
Table 8
Observation days experiment results in different areas.
 Prediction (days) 1st 2nd 3rd 4th 5th 6th 7th Average 
 

SCS

Observation 7 days

MAE (cm)

0.223 0.318 0.451 0.607 0.783 0.970 1.165 0.645  
 Observation14 days 0.198 0.302 0.437 0.595 0.769 0.955 1.148 0.629  
 Observation 28 days 0.194 0.294 0.427 0.582 0.752 0.933 1.120 0.614  
 Observation 56 days 0.202 0.300 0.435 0.594 0.769 0.956 1.150 0.630  
 Observation 112 days 0.206 0.309 0.445 0.606 0.785 0.974 1.170 0.642  
 Observation 7 days

RMSE (cm)

0.297 0.418 0.593 0.802 1.036 1.285 1.545 0.854  
 Observation14 days 0.265 0.400 0.580 0.789 1.020 1.266 1.523 0.835  
 Observation 28 days 0.259 0.390 0.565 0.770 0.997 1.238 1.487 0.815  
 Observation 56 days 0.268 0.398 0.579 0.791 1.025 1.275 1.535 0.839  
 Observation 112 days 0.274 0.407 0.588 0.802 1.038 1.290 1.548 0.849  
 

TWP

Observation 7 days

MAE (cm)

0.194 0.278 0.401 0.544 0.698 0.854 1.010 0.568  
 Observation14 days 0.160 0.255 0.381 0.525 0.680 0.839 0.998 0.548  
 Observation 28 days 0.161 0.252 0.376 0.519 0.673 0.831 0.988 0.543  
 Observation 56 days 0.162 0.256 0.387 0.537 0.697 0.859 1.016 0.559  
 Observation 112 days 0.169 0.263 0.392 0.541 0.699 0.861 1.022 0.564  
 Observation 7 days

RMSE (cm)

0.253 0.360 0.523 0.714 0.919 1.125 1.331 0.747  
 Observation14 days 0.209 0.334 0.502 0.693 0.899 1.110 1.319 0.724  
 Observation 28 days 0.210 0.330 0.493 0.683 0.887 1.095 1.302 0.714  
 Observation 56 days 0.212 0.336 0.509 0.709 0.921 1.134 1.343 0.738  
 Observation 112 days 0.221 0.345 0.514 0.712 0.921 1.133 1.344 0.741  
 

APS

Observation 7 days

MAE (cm)

0.239 0.333 0.477 0.645 0.824 1.004 1.183 0.672  
 Observation14 days 0.206 0.315 0.466 0.638 0.819 1.002 1.184 0.661  
 Observation 28 days 0.202 0.311 0.460 0.631 0.812 0.994 1.175 0.655  
 Observation 56 days 0.207 0.313 0.465 0.639 0.823 1.008 1.189 0.663  
 Observation 112 days 0.218 0.325 0.476 0.652 0.836 1.021 1.202 0.676  
 Observation 7 days

RMSE (cm)

0.414 0.563 0.812 1.108 1.417 1.717 2.005 1.148  
 Observation14 days 0.345 0.537 0.809 1.116 1.434 1.743 2.039 1.146  
 Observation 28 days 0.338 0.531 0.803 1.113 1.431 1.738 2.031 1.140  
 Observation 56 days 0.344 0.535 0.808 1.117 1.434 1.741 2.032 1.145  
 Observation 112 days 0.362 0.550 0.824 1.138 1.458 1.768 2.061 1.166  
Table 9
Comparison results of computational cost.
 Methods Flops Training times Inference times Training memory Inference memory 
 ConvLSTM 1.903T 0.751 s 0.253 s 22.857G 1.659G  
 Ours 0.302T 0.092 s 0.047 s 7.734G 1.973G  
 

4.6. Computational cost experiments

The computational efficiency of models is crucial for practical al-
gorithm applications. Therefore, in this experiment, we conduct a 
cost analysis of model computations. Relative to feedforward neural 
networks, the RNN tends to exhibit higher computational complexity 
due to additional recurrent computations at each time step, which 
are challenging to parallelize effectively using matrix operations. In 
order to intuitively demonstrate the advantages of our model in terms 
of computational efficiency, we choose the ConvLSTM method, which 
also performs well in SLA prediction performance, for comparative 
experiments.

Table  9 presents the total computational cost of models for pre-
dicting SLA fields over the next 7 days. The experiment is conducted 
in the APS area. The input SLA fields resolution is 1/4◦ longitude ×
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1/4◦ latitude. The computing device is based on the operating system 
Ubuntu 20.04 and a GPU NVIDIA 3090. Python and PyTorch are used 
to build our neural network model. The ‘‘Flops’’ refers to Floating 
Point Operations of the model. The ‘‘Training Time’’ indicates the time 
taken by the model to process each sample during training, while the 
‘‘Inference Time’’ indicates the time required by the model to process 
each sample during inference. The ‘‘Training Memory’’ refers to the 
memory size occupied by the model’s parameters when training on 
a single sample. The ‘‘Inference Memory’’ represents the memory size 
occupied by the model’s parameters when performing inference on a 
single sample.

According to the Flops, the computation speed of our UNet-TSTA 
model has increased by 6.3 times than the advanced ConvLSTM method.
Compared to ConvLSTM, the UNet-TSTA model reduces the number 
of parameters during training by 66.16%, while maintaining a similar 
number of parameters during inference.
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ConvLSTM is a RNN-based variant: the output at each time step 
depends on the computation result from the previous time step. As a 
result, there is a temporal dependency during training and inference, 
making parallelization difficult, which significantly increases compu-
tation time. In contrast, UNet-TSTA uses the UNet and ViT architec-
tures that support parallel processing of all time steps in the input 
sequence along the time dimension, thus improving computational ef-
ficiency. RNN-based variant structures tend to maintain multiple states 
(such as hidden states and memory units) at each time step, which 
makes the computational graph complex, resulting in frequent state 
updates and higher memory usage. UNet-TSTA, however, adopts an 
end-to-end approach where multiple time-step predictions are output 
at once, without the need to save cyclic states, resulting in less memory
usage.

5. Conclusion

To address the challenge of accurately and efficiently predicting 
SLA fields, we have proposed a novel UNet-TSTA model based on UNet 
and Transformer Attention, aiming at enhancing both the accuracy and 
speed of SLA predictions. The parallel convolution operations of CNN 
improve the training and inference speed of the model, as well as its 
capability to process 2D spatial information. The UNet backbone archi-
tecture enhances the model’s ability to capture and analyze sea eddies 
at different scales. The TSTA module consists of two parts: STA and 
TTA. The STA module utilizes the attention mechanism of P-ViT to cap-
ture longer-range spatial dependencies, thereby enhancing the model’s 
global information perception of the SLA field. The TTA module inge-
niously uses the free combination of temporal and spatial dimensions, 
creatively constructing two spatiotemporal planes, and further utilizes 
the P-ViT method to capture spatiotemporal dependencies.

We validate our approach on real SLA observational historical 
datasets. Compared to one of the state-of-the-art methods in the SLA 
prediction domain, MLFrnn, our UNet-TSTA model shows a perfor-
mance lead of 17.3% in RMSE. Additionally, compared to mainstream 
ConvLSTM methods in recent years, our model achieves lower pre-
diction errors and improves computational efficiency by 6.3 times. 
In the future, we would like to collect and utilize the multi-modal 
data such as sea surface height, temperature, and air pressure. The 
coupling relationships among these multi-modal data will facilitate 
further improvement in SLA field prediction performance.
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